מחקרים שנערכו לאחרונה הדגישו תופעה מעניינת: קיים קשר "דו-כיווני" בין ההטיות הקיימות במודלים של בינה מלאכותית לבין אלו של המחשבה האנושית.
אינטראקציה זו יוצרת מנגנון הנוטה להגביר עיוותים קוגניטיביים בשני הכיוונים .
מחקר זה מדגים כי מערכות בינה מלאכותית לא רק יורשות הטיות אנושיות מנתוני אימון, אלא שכאשר הן נפרסות, הן יכולות להעצים אותן, ובכך להשפיע על תהליכי קבלת ההחלטות של אנשים. מצב זה יוצר מעגל שאם לא ינוהל כראוי, עלול להחמיר בהדרגה את ההטיות הראשוניות.
תופעה זו בולטת במיוחד במגזרים חשובים כגון:
בסביבות אלה, הטיות ראשוניות קטנות יכולות להתעצם באמצעות אינטראקציות חוזרות ונשנות בין מפעילים אנושיים למערכות אוטומטיות, ולהפוך בהדרגה להבדלים משמעותיים בתוצאות .
המוח האנושי משתמש באופן טבעי ב"קיצורי דרך למחשבה" שיכולים להכניס טעויות שיטתיות לשיפוטינו. תיאוריית ה"חשיבה הכפולה " מבחינה בין:
לדוגמה, בתחום הרפואי, רופאים נוטים לתת משקל רב מדי להשערות ראשוניות, ולהתעלם מראיות סותרות. תופעה זו, המכונה "הטיית אישור", משוכפלת ומוגברת על ידי מערכות בינה מלאכותית שאומנו על נתוני אבחון היסטוריים.
מודלים של למידת מכונה משמרים הטיות בעיקר באמצעות שלושה ערוצים:
מחקר שנערך ב-UCL בשנת 2024 הראה כי מערכות זיהוי פנים שאומנו על סמך שיפוטים רגשיים אנושיים ירשו נטייה של 4.7% לתייג פנים כ"עצובות", רק כדי להגביר נטייה זו ל-11.3% באינטראקציות עוקבות עם משתמשים.
ניתוח נתונים מפלטפורמות גיוס עובדים מראה שכל סבב של שיתוף פעולה בין אדם לאלגוריתם מגביר את ההטיה המגדרית ב-8-14% באמצעות מנגנוני משוב המחזקים זה את זה.
כאשר אנשי מקצוע בתחום משאבי אנוש מקבלים רשימות מועמדים מבוססות בינה מלאכותית שכבר הושפעו מהטיות היסטוריות, האינטראקציות הבאות שלהם (כגון בחירת שאלות ראיון או ביקורות ביצועים) מחזקות את הייצוגים המוטים של המודל.
מטא-אנליזה משנת 2025 של 47 מחקרים מצאה כי שלושה סבבים של שיתוף פעולה בין בני אדם לבינה מלאכותית הגדילו את הפערים הדמוגרפיים פי 1.7-2.3 בתחומים כמו שירותי בריאות, הלוואות וחינוך.
מסגרת מדידת ההטיה שהוצעה על ידי דונג ואחרים (2024) מאפשרת לנו לזהות הטיה ללא צורך בתוויות של "האמת הכל" על ידי ניתוח פערים בדפוסי קבלת החלטות בין קבוצות מוגנות.
טכניקת "המראה האלגוריתמית" שפותחה על ידי חוקרי UCL הפחיתה את ההטיה המגדרית בהחלטות קידום ב-41%, בכך שהראתה למנהלים כיצד ייראו הבחירות ההיסטוריות שלהם אם היו נעשות על ידי מערכת בינה מלאכותית.
פרוטוקולי אימון המתחלפים בין סיוע בבינה מלאכותית לקבלת החלטות אוטונומית מראים פוטנציאל מיוחד, ומפחיתים את השפעות העברת ההטיה מ-17% ל-6% במחקרי אבחון קליניים.
ארגונים המיישמים מערכות בינה מלאכותית מבלי להתחשב באינטראקציות עם הטיות אנושיות מתמודדים עם סיכונים משפטיים ותפעוליים מוגברים.
ניתוח תביעות אפליה בתעסוקה מראה כי תהליכי גיוס בסיוע בינה מלאכותית מגדילים את שיעורי ההצלחה של התובעים ב-28% בהשוואה לתיקים מסורתיים המובלים על ידי בני אדם, שכן עקבות של החלטות אלגוריתמיות מספקות ראיות ברורות יותר להשפעה שונה.
המתאם בין הטיות אלגוריתמיות למגבלות על חופש הבחירה מחייב אותנו לחשוב מחדש על פיתוח טכנולוגי מנקודת מבט של אחריות אישית ושמירה על יעילות השוק. חיוני להבטיח שבינה מלאכותית תהפוך לכלי להרחבת הזדמנויות, לא להגבלתן.
כיוונים מבטיחים כוללים:
רק באמצעות רגולציה עצמית אחראית בתעשייה, בשילוב עם חופש הבחירה של המשתמשים, נוכל להבטיח שחדשנות טכנולוגית תמשיך להיות מנוע של שגשוג והזדמנויות עבור כל אלו שמוכנים לבחון את כישוריהם.