עֵסֶק

נתוני הדרכת בינה מלאכותית: עסק של 10 מיליארד דולר שמזין בינה מלאכותית

בינה מלאכותית בקנה מידה שווה 29 מיליארד דולר, וסביר להניח שמעולם לא שמעתם עליה. זוהי תעשיית נתוני האימון הבלתי נראית שמניעה את ChatGPT ו-Stable Diffusion - שוק של 9.58 מיליארד דולר שצומח בקצב של 27.7% מדי שנה. העלויות זינקו ב-4,300% מאז 2020 (Gemini Ultra: 192 מיליון דולר). אבל עד 2028, לא יהיה יותר טקסט אנושי זמין לציבור. בינתיים, תביעות זכויות יוצרים ומיליוני דרכונים שנמצאו במערכי נתונים. עבור חברות: אתם יכולים להתחיל בחינם עם Hugging Face ו-Google Colab.

התעשייה הבלתי נראית שמאפשרת את ChatGPT, Stable Diffusion וכל מערכת בינה מלאכותית מודרנית אחרת

הסוד השמור ביותר של הבינה המלאכותית

כשמשתמשים ב-ChatGPT כדי לחבר אימייל או ליצור תמונה עם Midjourney, לעתים רחוקות חושבים על ה"קסם" שמאחורי הבינה המלאכותית. עם זאת, מאחורי כל תגובה חכמה וכל תמונה שנוצרת מסתתרת תעשייה של מיליארדי דולרים שמעטים מדברים עליה: שוק נתוני הדרכת הבינה המלאכותית .

מגזר זה, אשר על פי MarketsandMarkets יגיע ל -9.58 מיליארד דולר עד 2029 עם צמיחה שנתית של 27.7%, הוא המנוע האמיתי של הבינה המלאכותית המודרנית. אבל איך בדיוק עובד העסק הנסתר הזה?

המערכת האקולוגית הבלתי נראית שמניעה מיליארדים

ענקי המסחר

עולם נתוני ההדרכה של בינה מלאכותית נשלט על ידי כמה חברות שרוב האנשים מעולם לא שמעו עליהן:

Scale AI , החברה הגדולה ביותר בתעשייה עם נתח שוק של 28% , הוערכה לאחרונה ב -29 מיליארד דולר לאחר ההשקעה של Meta. לקוחותיה הארגוניים משלמים בין 100,000 דולר לכמה מיליוני דולרים בשנה עבור נתונים באיכות גבוהה.

אפן , שבסיסה באוסטרליה, מפעילה רשת עולמית של למעלה ממיליון מומחים ב-170 מדינות, אשר מתייגים ואוספים באופן ידני נתונים עבור בינה מלאכותית. חברות כמו Airbnb, John Deere ו-Procter & Gamble משתמשות בשירותיהן כדי "לאמן" את מודלי הבינה המלאכותית שלהן.

עולם הקוד הפתוח

במקביל, קיימת מערכת אקולוגית בקוד פתוח המובלת על ידי ארגונים כמו LAION (רשת פתוחה לבינה מלאכותית בקנה מידה גדול), עמותה גרמנית ללא מטרות רווח שיצרה את LAION-5B , מערך הנתונים של 5.85 מיליארד זוגות תמונה-טקסט שאפשר את הפיזור היציב.

Common Crawl משחררת מדי חודש טרה-בייטים של נתוני אינטרנט גולמיים , המשמשים לאימון GPT-3, LLaMA ומודלים רבים אחרים של שפות.

העלויות הנסתרות של בינה מלאכותית

מה שהציבור לא יודע הוא כמה יקר הפך לאמן מודל בינה מלאכותית מודרני. לפי Epoch AI , העלויות עלו פי 2-3 בשנה בשמונה השנים האחרונות .

דוגמאות לעלויות אמיתיות:

העובדה המפתיעה ביותר? לפי AltIndex.com , עלויות הכשרת בינה מלאכותית עלו ב-4,300% מאז 2020 .

האתגרים האתיים והמשפטיים של המגזר

שאלת זכויות היוצרים

אחת הסוגיות השנויות ביותר במחלוקת נוגעת לשימוש בחומר המוגן בזכויות יוצרים. בפברואר 2025, בית משפט בדלאוור פסק בתיק Thomson Reuters נגד ROSS Intelligence כי אימון בבינה מלאכותית יכול להוות הפרה ישירה של זכויות יוצרים, ודחה את טענת "שימוש הוגן".

משרד זכויות היוצרים האמריקאי פרסם דו"ח בן 108 עמודים, בו מסיקים כי לא ניתן להגן על שימושים מסוימים כשימוש הוגן, מה שפותח את הדלת לעלויות רישוי עצומות שעלולות להיות עבור חברות בינה מלאכותית.

פרטיות ונתונים אישיים

חקירה של MIT Technology Review חשפה כי DataComp CommonPool, אחד ממערכי הנתונים הנפוצים ביותר, מכיל מיליוני תמונות של דרכונים, כרטיסי אשראי ותעודות לידה. עם למעלה מ-2 מיליון הורדות בשנתיים האחרונות, הדבר מעלה חששות משמעותיים בנוגע לפרטיות.

העתיד: מחסור וחדשנות

בעיית "נתוני שיא"

מומחים צופים שעד שנת 2028, רוב הטקסט הציבורי שנוצר על ידי בני אדם הזמין באינטרנט יהיה בשימוש . תרחיש "שיא נתוני" זה דוחף חברות לעבר פתרונות חדשניים:

  • נתונים סינתטיים : יצירה מלאכותית של נתוני אימון
  • הסכמי רישוי : שותפויות אסטרטגיות כמו זו שבין OpenAI ל-Financial Times
  • נתונים רב-מודאליים : שילוב טקסט, תמונות, אודיו ווידאו

תקנות חדשות בקרוב

חוק השקיפות בבינה מלאכותית של קליפורניה ידרוש מחברות לחשוף את מערכי הנתונים שהן משתמשות בהם להכשרה, בעוד שהאיחוד האירופי מיישם דרישות דומות בחוק הבינה המלאכותית שלו.

הזדמנויות לחברות איטלקיות

עבור חברות המעוניינות לפתח פתרונות בינה מלאכותית, הבנת המערכת האקולוגית הזו היא קריטית:

אפשרויות ידידותיות לתקציב:

פתרונות ארגוניים:

  • קנה מידה של AI ו- Appen עבור פרויקטים קריטיים למשימה
  • שירותים מיוחדים : כמו Nexdata עבור NLP או FileMarket AI עבור נתוני אודיו

מסקנות

שוק נתוני ההדרכה בתחום הבינה המלאכותית שווה 9.58 מיליארד דולר וצומח בקצב שנתי של 27.7%. תעשייה בלתי נראית זו אינה רק המנוע של הבינה המלאכותית המודרנית, אלא גם מייצגת את אחד האתגרים האתיים והמשפטיים הגדולים ביותר של זמננו.

במאמר הבא נחקור כיצד חברות יכולות להיכנס לעולם הזה בפועל, עם מדריך מעשי לתחילת פיתוח פתרונות בינה מלאכותית באמצעות מערכי הנתונים והכלים הזמינים כיום.

עבור אלו המעוניינים להעמיק מיד, ריכזנו מדריך מפורט עם מפת דרכים ליישום, עלויות ספציפיות ומערך כלים מלא - להורדה בחינם על ידי הרשמה ל... newsletter .

קישורים מועילים להתחלה מיידית:

מקורות טכניים:

אל תחכו ל"מהפכת הבינה המלאכותית". צרו אותה. בעוד חודש, ייתכן שיהיה לכם את המודל הראשון שעובד, בזמן שאחרים עדיין מתכננים.

משאבים לצמיחה עסקית

9 בנובמבר, 2025

מערכת הקירור של גוגל דיפמיינד בבינה מלאכותית: כיצד בינה מלאכותית מחוללת מהפכה ביעילות אנרגטית של מרכזי נתונים

Google DeepMind משיגה חיסכון של -40% באנרגיה בקירור מרכז נתונים (אך רק -4% מהצריכה הכוללת, מכיוון שהקירור מהווה 10% מהסך הכל) - דיוק של 99.6% עם שגיאה של 0.4% ב-PUE 1.1 באמצעות למידה עמוקה בת 5 שכבות, 50 צמתים, 19 משתני קלט על 184,435 דגימות אימון (שנתיים של נתונים). אושר ב-3 מתקנים: סינגפור (פריסה ראשונה 2016), אימסהייבן, קאונסיל בלאפס (השקעה של 5 מיליארד דולר). PUE כלל-ציית מערכות של גוגל 1.09 לעומת ממוצע בתעשייה 1.56-1.58. Model Predictive Control מנבאת טמפרטורה/לחץ לשעה הקרובה תוך ניהול בו זמנית של עומסי IT, מזג אוויר ומצב ציוד. אבטחה מובטחת: אימות דו-שלבי, מפעילים תמיד יכולים להשבית בינה מלאכותית. מגבלות קריטיות: אפס אימות עצמאי מחברות ביקורת/מעבדות לאומיות, כל מרכז נתונים דורש מודל מותאם אישית (8 שנים, מעולם לא מסחרי). יישום: 6-18 חודשים, דורש צוות רב-תחומי (מדעי נתונים, HVAC, ניהול מתקנים). ניתן ליישם מעבר למרכזי נתונים: מפעלים תעשייתיים, בתי חולים, קניונים, משרדי תאגידים. 2024-2025: גוגל עוברת לקירור נוזלי ישיר עבור TPU v5p, דבר המצביע על מגבלות מעשיות של אופטימיזציה של בינה מלאכותית.
9 בנובמבר, 2025

למה מתמטיקה קשה (גם אם אתה בינה מלאכותית)

מודלים של שפה לא יכולים להכפיל - הם משננים תוצאות כמו שאנחנו משננים פאי, אבל זה לא הופך אותם לבעלי יכולת מתמטית. הבעיה היא מבנית: הם לומדים דרך דמיון סטטיסטי, לא הבנה אלגוריתמית. אפילו "מודלים של חשיבה" חדשים כמו o1 נכשלים במשימות טריוויאליות: הוא סופר נכון את ה-'r' ב"תות" לאחר שניות של עיבוד, אבל נכשל כשהוא צריך לכתוב פסקה שבה האות השנייה של כל משפט מאייתת מילה. גרסת הפרימיום, שעולה 200 דולר לחודש, לוקחת ארבע דקות לפתור את מה שילד יכול לעשות באופן מיידי. DeepSeek ו-Mistral עדיין סופרים אותיות באופן שגוי בשנת 2025. הפתרון המתפתח? גישה היברידית - המודלים החכמים ביותר הבינו מתי לקרוא למחשבון אמיתי במקום לנסות את החישוב בעצמם. שינוי פרדיגמה: בינה מלאכותית לא צריכה לדעת איך לעשות הכל, אלא לתזמר את הכלים הנכונים. פרדוקס סופי: GPT-4 יכול להסביר בצורה מבריקה את תורת הגבולות, אבל הוא נכשל בבעיות כפל שמחשבון כיס תמיד פותר נכון. הם מצוינים לחינוך מתמטי - הם מסבירים בסבלנות אינסופית, מתאימים דוגמאות ומפרקים חשיבה מורכבת. לחישובים מדויקים? תסמכו על מחשבון, לא על בינה מלאכותית.
9 בנובמבר, 2025

רגולציה של בינה מלאכותית עבור יישומי צרכנים: כיצד להתכונן לתקנות החדשות של 2025

2025 מסמנת את סוף עידן "המערב הפרוע" של הבינה המלאכותית: חוק הבינה המלאכותית של האיחוד האירופי נכנס לתוקף באוגוסט 2024, עם דרישות אוריינות בתחום הבינה המלאכותית החל מ-2 בפברואר 2025, וממשל ו-GPAI החל מ-2 באוגוסט. קליפורניה מובילה את הדרך עם SB 243 (שנולד לאחר התאבדותו של סוול סצר, ילד בן 14 שפיתח קשר רגשי עם צ'אטבוטים), אשר מטיל איסור על מערכות תגמול כפייתיות, גילוי מחשבות אובדניות, תזכורת "אני לא אנושי" כל שלוש שעות, ביקורות ציבוריות עצמאיות וקנסות של 1,000 דולר לכל הפרה. SB 420 דורש הערכת השפעה עבור "החלטות אוטומטיות בסיכון גבוה" עם הזכות לערער לבדיקה אנושית. אכיפה אמיתית: נום תבע בשנת 2022 על בוטים שהתחזו למאמנים אנושיים, הסדר של 56 מיליון דולר. מגמות לאומיות: אלבמה, הוואי, אילינוי, מיין ומסצ'וסטס מסווגות אי הודעה על צ'אטבוטים של בינה מלאכותית כהפרות UDAP. גישת סיכון תלת-שלבית - מערכות קריטיות (בריאות/תחבורה/אנרגיה), אישור טרום פריסה, גילויים שקופים מול הצרכן, רישום כללי ובדיקות אבטחה. טלאים רגולטוריים ללא הסכמה פדרלית: חברות רב-מדינתיות חייבות להתמודד עם דרישות משתנות. האיחוד האירופי מאוגוסט 2026: ליידע את המשתמשים על אינטראקציה עם בינה מלאכותית אלא אם כן תוכן ברור מאליו, שנוצר על ידי בינה מלאכותית מתויג כקריא מכונה.