עדכונים

תמיכה טלפונית זמינה כעת!

ערוץ קשר חדש פעיל. מספר: 39+0230356790, זמין בשעות הפעילות. שיחות נכנסות בלבד - אין שיחות יוצאות או הודעות ממספר זה. חלופה: טופס יצירת קשר באתר. נסה שוב

תמיכה טלפונית זמינה כעת!

אנו שמחים להודיע לכם שמספר הטלפון החדש שלנו פעיל כעת.
כעת תוכלו ליצור איתנו קשר ישירות לכל צורך, בקשה או מידע.
המספר שלנו הוא +39 0230356790.


זמינות: שעות פעילות. למי שמעוניין, אנא השתמשו בטופס יצירת הקשר באתר האינטרנט שלנו.

הערה חשובה: מספר זה מיועד לשיחות נכנסות בלבד. איננו מבצעים שיחות יוצאות או שולחים הודעות טקסט ממספר זה.
צוות המזכירות שלנו עומד לרשותכם במקצועיות ובמומחיות הגבוהה ביותר.

אנו שמחים להציע לכם את ערוץ התקשורת החדש הזה!

משאבים לצמיחה עסקית

9 בנובמבר, 2025

מערכת הקירור של גוגל דיפמיינד בבינה מלאכותית: כיצד בינה מלאכותית מחוללת מהפכה ביעילות אנרגטית של מרכזי נתונים

Google DeepMind משיגה חיסכון של -40% באנרגיה בקירור מרכז נתונים (אך רק -4% מהצריכה הכוללת, מכיוון שהקירור מהווה 10% מהסך הכל) - דיוק של 99.6% עם שגיאה של 0.4% ב-PUE 1.1 באמצעות למידה עמוקה בת 5 שכבות, 50 צמתים, 19 משתני קלט על 184,435 דגימות אימון (שנתיים של נתונים). אושר ב-3 מתקנים: סינגפור (פריסה ראשונה 2016), אימסהייבן, קאונסיל בלאפס (השקעה של 5 מיליארד דולר). PUE כלל-ציית מערכות של גוגל 1.09 לעומת ממוצע בתעשייה 1.56-1.58. Model Predictive Control מנבאת טמפרטורה/לחץ לשעה הקרובה תוך ניהול בו זמנית של עומסי IT, מזג אוויר ומצב ציוד. אבטחה מובטחת: אימות דו-שלבי, מפעילים תמיד יכולים להשבית בינה מלאכותית. מגבלות קריטיות: אפס אימות עצמאי מחברות ביקורת/מעבדות לאומיות, כל מרכז נתונים דורש מודל מותאם אישית (8 שנים, מעולם לא מסחרי). יישום: 6-18 חודשים, דורש צוות רב-תחומי (מדעי נתונים, HVAC, ניהול מתקנים). ניתן ליישם מעבר למרכזי נתונים: מפעלים תעשייתיים, בתי חולים, קניונים, משרדי תאגידים. 2024-2025: גוגל עוברת לקירור נוזלי ישיר עבור TPU v5p, דבר המצביע על מגבלות מעשיות של אופטימיזציה של בינה מלאכותית.
9 בנובמבר, 2025

למה מתמטיקה קשה (גם אם אתה בינה מלאכותית)

מודלים של שפה לא יכולים להכפיל - הם משננים תוצאות כמו שאנחנו משננים פאי, אבל זה לא הופך אותם לבעלי יכולת מתמטית. הבעיה היא מבנית: הם לומדים דרך דמיון סטטיסטי, לא הבנה אלגוריתמית. אפילו "מודלים של חשיבה" חדשים כמו o1 נכשלים במשימות טריוויאליות: הוא סופר נכון את ה-'r' ב"תות" לאחר שניות של עיבוד, אבל נכשל כשהוא צריך לכתוב פסקה שבה האות השנייה של כל משפט מאייתת מילה. גרסת הפרימיום, שעולה 200 דולר לחודש, לוקחת ארבע דקות לפתור את מה שילד יכול לעשות באופן מיידי. DeepSeek ו-Mistral עדיין סופרים אותיות באופן שגוי בשנת 2025. הפתרון המתפתח? גישה היברידית - המודלים החכמים ביותר הבינו מתי לקרוא למחשבון אמיתי במקום לנסות את החישוב בעצמם. שינוי פרדיגמה: בינה מלאכותית לא צריכה לדעת איך לעשות הכל, אלא לתזמר את הכלים הנכונים. פרדוקס סופי: GPT-4 יכול להסביר בצורה מבריקה את תורת הגבולות, אבל הוא נכשל בבעיות כפל שמחשבון כיס תמיד פותר נכון. הם מצוינים לחינוך מתמטי - הם מסבירים בסבלנות אינסופית, מתאימים דוגמאות ומפרקים חשיבה מורכבת. לחישובים מדויקים? תסמכו על מחשבון, לא על בינה מלאכותית.
9 בנובמבר, 2025

רגולציה של בינה מלאכותית עבור יישומי צרכנים: כיצד להתכונן לתקנות החדשות של 2025

2025 מסמנת את סוף עידן "המערב הפרוע" של הבינה המלאכותית: חוק הבינה המלאכותית של האיחוד האירופי נכנס לתוקף באוגוסט 2024, עם דרישות אוריינות בתחום הבינה המלאכותית החל מ-2 בפברואר 2025, וממשל ו-GPAI החל מ-2 באוגוסט. קליפורניה מובילה את הדרך עם SB 243 (שנולד לאחר התאבדותו של סוול סצר, ילד בן 14 שפיתח קשר רגשי עם צ'אטבוטים), אשר מטיל איסור על מערכות תגמול כפייתיות, גילוי מחשבות אובדניות, תזכורת "אני לא אנושי" כל שלוש שעות, ביקורות ציבוריות עצמאיות וקנסות של 1,000 דולר לכל הפרה. SB 420 דורש הערכת השפעה עבור "החלטות אוטומטיות בסיכון גבוה" עם הזכות לערער לבדיקה אנושית. אכיפה אמיתית: נום תבע בשנת 2022 על בוטים שהתחזו למאמנים אנושיים, הסדר של 56 מיליון דולר. מגמות לאומיות: אלבמה, הוואי, אילינוי, מיין ומסצ'וסטס מסווגות אי הודעה על צ'אטבוטים של בינה מלאכותית כהפרות UDAP. גישת סיכון תלת-שלבית - מערכות קריטיות (בריאות/תחבורה/אנרגיה), אישור טרום פריסה, גילויים שקופים מול הצרכן, רישום כללי ובדיקות אבטחה. טלאים רגולטוריים ללא הסכמה פדרלית: חברות רב-מדינתיות חייבות להתמודד עם דרישות משתנות. האיחוד האירופי מאוגוסט 2026: ליידע את המשתמשים על אינטראקציה עם בינה מלאכותית אלא אם כן תוכן ברור מאליו, שנוצר על ידי בינה מלאכותית מתויג כקריא מכונה.